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SUMMARY

In this paper we numerically investigate a one-dimensional model of blood �ow in human arteries using
both a discontinuous Galerkin and a Taylor–Galerkin formulation. The derivation of the model and the
numerical schemes are detailed and applied to two model numerical experiments. We �rst study the
e�ect of an intervention, such the implantation of a vascular prosthesis (e.g. a stent), which leads to
an abrupt variation of the mechanical characteristics of an artery. We then discuss the simulation of
the propagation of pressure and velocity waveforms in the human arterial tree using a simpli�ed model
consisting of the 55 main arteries. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The growing interest in the mathematical and numerical modelling of biomedical systems
and, in particular, the human cardiovascular system, is supported by the numerous works
which have appeared on the subject in recent years, for example [1–4] and the references
therein. Within this context, the application of simpli�ed models have been shown to provide
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useful information for the practitioners at a reasonable computational cost [5] and this sug-
gests that such models could provide a suitable tool for patient-speci�c medical planning of
interventions.
In this paper we focus on the application of a one-dimensional model of blood �ow in

compliant vessels to study the e�ect of local narrowing or sti�ening of an artery on the �ow
and wave propagation patterns. Such a situation can occur due to a stent implantation or the
presence of a vascular prosthesis. A common pathology in the human circulatory system is the
onset of atherosclerotic plaques that cause a restriction of the arterial lumen called a stenosis.
In the most severe cases this may hinder, or even stop, the �ow of blood. One of the present
techniques to treat this problem is the implantation of a stent (an expandable metal mesh)
into the a�ected region which has the purpose of returning the artery lumen to approximately
its original shape. Whenever possible, this procedure is preferred to more invasive ones, such
as surgical by-pass.
Nevertheless, besides other e�ects, the presence of a stent causes an abrupt variation in the

elastic properties of the vessel wall, since the stent is usually far more rigid than the soft
arterial tissue. This may cause a disturbance in the blood �ow pattern and wall displacement
with the appearance of re�ected waves. Indeed, the so-called pressure pulse generated by the
interaction between the blood �ow and the compliance of the circulatory system is intrinsically
related to the elastic properties of the arteries. The alteration in the pressure pattern is even
more signi�cant in the case of vascular prosthesis in the large arteries, for example, where
stents are used to treat aortic or femoral aneurisms. The superposition of the waves re�ected
by the prosthesis or the stent with the pressure pulse produced by the heart can generate
localised pressure peaks. Should these peaks occur at a suture line, the failure of an aortic or
femoral prosthesis could be catastrophic.
Wave re�ection also occurs at the branching of the arteries in the vascular system and this

should be accounted for in considering the e�ect in pressure and waveforms at a given artery
due to changes in cardiac output, geometry and elastic properties elsewhere in the arterial
tree. The one-dimensional model of the compliant vessel can be adapted for the simulation of
wave propagation in the arterial tree by imposing suitable interface conditions at the branching
points.
In this paper we build upon the work of Formaggia et al. [6] and detail the construction

of two numerical discretisations of the one-dimensional equations with abrupt changes in
material properties. Section 2 outlines the governing equations and Section 3 analyses the
characteristic system for the hyperbolic system of equations and provides a framework to
discuss the appropriate speci�cation of boundary conditions. We discuss the discretization
of the hyperbolic system using the discontinuous Galerkin method in Section 4 and using
a Taylor–Galerkin approach in Section 5. Finally Section 7 presents numerical results for
vessels with variable material properties and a simulation of wave propagation in a model of
the arterial system composed by the main 55 arteries.

2. GOVERNING EQUATIONS

We consider a simple compliant tube, illustrated in Figure 1, as a model of the artery.
Following Brook et al. [7] we write the system of equations representing continuity of mass
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Figure 1. Simple compliant tube.

and momentum, for a6x6b and t¿0, as
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where the x is the axial direction, A=A(x; t)=
∫
S d� is the area of a cross section S,

Q=Q(x; t) is the mass �ux across a section, � is the density of the blood which is taken
to be constant, p is the internal pressure and u(x; t)=Q(x; t)=A(x; t) denotes the velocity of
the �uid averaged across the section. The term � is the momentum-�ux correction coe�cient,
de�ned as

�(x; t)=

∫
S u2 d�
Au2

In the following we will assume �=1 which is equivalent to assuming a �at velocity pro�le.
Even though this might seem a crude assumption since the velocity pro�le of blood in any
section S does indeed vary in time,‡ comparison with experimental data [8] has shown that
blood velocity pro�les are rather �at on average and, furthermore, this assumption simpli�es
the analysis. However, we should stress that the methods to be presented in the following
sections may be readily extended to the case of � �=1. The term KR is a strictly positive
quantity which represents the viscous resistance of the �ow per unit length of tube. The
unknowns in this system are p, A and Q. Their number exceeds the number of equations
and a common way to close the system is to explicitly provide an algebraic relationship
between the pressure of the vessel p and the vessel area A. For example, by assuming static
equilibrium in the radial direction of a cylindrical tube, one can derive a pressure relationship
of the form

p=pext + �(
√
A−

√
A0) (2)

where

�=
√
�h0E

(1− �2)A0

Here h0 and A0 =A0(x) denote the vessel thickness and sectional area, respectively, at the
equilibrium state (p;Q)= (pext ; 0), E=E(x) is the Young modulus, pext is the external pres-

‡The analytical solution of pulsatile �ow in a straight cylindrical elastic tube is given in Reference [9]. Analytical
solutions for an initially stressed, anisotropic elastic tube are presented in Reference [10].
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sure, assumed constant, and � is the Poisson ratio. This ratio is typically taken to be �=1=2
since biological tissue is practically incompressible.
The system of equations (1) can be expressed alternatively in terms of the variables (A; u).

By simple manipulations one gets
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Both systems (1) and (3) may be written in conservation form. For the system (A;Q) we
will write
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For the (A; u) system we have
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denotes the total pressure (scaled by the constant density).
The two weak forms are equivalent for smooth solutions, in particular when A and Q are

C1 continuous functions with respect to both arguments and A is strictly positive. Otherwise,
the proper conservation system is the one in the (A;Q) variables, since it derives directly
from the basic physical principle of conservation of mass and momentum. Nevertheless, the
solutions within each of the approaches presented in this paper will be su�ciently smooth to
favour the use of the (A; u) system which has a simpler structure.
More precisely, the (A; u) system expressed by Equations (3) and the (A;Q) system

expressed by Equations (1) will be starting points of the numerical schemes discussed in
Sections 4 and 5, respectively. In using both systems we will assume the algebraic pressure-
area relationship (2) in all that follows.
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3. CHARACTERISTIC SYSTEM

3.1. Characteristic equations

Considering the pressure–area relationship (2) and assuming that �=�(x) and A0 =A0(x) we
recall that applying the chain rule we obtain
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System (3) can therefore be written in quasi-linear form as
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Under the assumption that A¿0, which is indeed a necessary condition to have a physically
relevant solution, the matrix H has two real eigenvalues �1;2 = u ± c and the corresponding
left eigenmatrix L is

L=

[
lT1

lT2

]
=

[ c
A 1

− c
A 1

]

For the typical values of velocity, vessel area and elastic parameter � encountered in arteries
under physiological conditions, we have that �1¿0 and �2¡0. Therefore our system is strictly
hyperbolic and subcritical.
We recall some of the main results regarding the hyperbolic system at hand. It has been

found in Reference [11] that, using a slightly di�erent expression for the pressure–area rela-
tionship and under some reasonable conditions on the smoothness of boundary and initial data,
the solution of system (1) remains smooth. Two critical assumptions to reach this conclusion
are the pulsatility of the in�ow data and a bound on the length of the tube; both are veri�ed
for physiological �ow in the human arterial tree. In the same work it is shown that, if the
solution is smooth and the initial and boundary data are such that A¿0, A remains strictly
positive for all times. In Reference [12] an energy inequality was derived which bounds a
measure of the energy of the hyperbolic system in terms of the initial and boundary data.
Furthermore, in the same work it has been found that the quantity

s=
1
2
�Au2 +

∫ A

A0
(p− pext) dA

is an entropy function for the system with associated �ux equal to Fs=Qpt .
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The characteristic variables can be determined by integrating the di�erential system @UW=L.
It may be shown that this is possible for our problem and that the two characteristic variables
are

W1 = u+ 4c= u+ 4A1=4
√

�
2�

(10)

W2 = u− 4c= u− 4A1=4
√

�
2�

(11)

Since �¿0, we may write, as previously reported in Reference [6], the variables (A; u) in
terms of (W1; W2) as
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(W1 −W2)

4
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In the case where f=0, Equations (9) can be transformed in a decoupled system of
equations for the characteristic variables, which component wise reads
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3.2. Boundary conditions

The characteristic analysis and the fact that for physiological conditions the �ow is subcritical
(i.e. �1¿0 and �2¡0) leads us to the conclusion that only one boundary condition has to be
imposed at each end of the tube. Di�erent type of boundary conditions may be envisaged.
Non-re�ecting boundary conditions are those that allow the simple wave associated with
the characteristics exiting the domain to leave without spurious re�ections. Typically those
conditions are expressed in terms of the characteristic variables. In References [13, 14] non-
re�ecting boundary conditions for an hyperbolic problem like (4) are provided as

l1

[
@U
@t

− B(U)
]
x=a

=0; l2

[
@U
@t

− B(U)
]
x=b

=0

For B(U)= 0 they are equivalent to imposing a constant value for the entering characteristics,
otherwise these relations account for the ‘natural decay’ due to the presence of the source
term. With those conditions the amplitude of the incoming waves is constant in time (or may
vary only because of the source term). In our case a condition of this type may be convenient
at the outlet section (i.e. x= b), while at the inlet (x= a) we would like to prescribe some
given values of pressure or �ux data coming either from measurement or other models.
The hyperbolic system at hand allows us to impose either a �ux Q (or velocity u) or area

A at x= a. For instance we may impose

A(a; t)= g(t); t¿0
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where g is a known function obtained, for instance, from the knowledge of the pressure time
variation at x= a. This type of condition is clearly of re�ective type and the simple wave
associated to the outgoing characteristic (W2 in this case) may be partly re�ected back into
the computational domain. Yet, this re�ection is a physical one.
It is also possible to have available values of both pressure (and thus area) and �ux

variations at the inlet. For instance, measurements of pressure pulse together with �ux data
could be obtained from Doppler ultrasound. Clearly the hyperbolic system does not allow to
impose both conditions at the same time. However, it is known [15] that given a state U0 at
a given time, one may construct a set of allowable boundary conditions which is given by
the Ũ which are obtained from U0 by the solution of a Riemann problem. This fact will be
exploited in the implementation of the boundary conditions for one of the proposed numerical
schemes that solves the Riemann problem in an approximate fashion.
In dealing with the numerical simulation of our hyperbolic system, the boundary conditions

must be supplemented with additional conditions which allow us to obtain a complete set of
values for U at the two boundaries. These are the so-called compatibility conditions which
read
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[
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+
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]
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@x
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]
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=0

In the schemes here presented we have implemented the compatibility conditions only
approximately. More details are found in Section 6.

4. DISCONTINUOUS GALERKIN METHOD

The wave propagation speeds in the large arteries are typically an order of magnitude higher
than the average �ow speeds. As mentioned previously, the characteristic system is inherently
subcritical and does not produce shock under physiological conditions. Therefore the numerical
challenge is to propagate waves for many periods without su�ering from excessive dispersion
and di�usion errors. If the solution remains smooth then high-order methods are particularly
attractive due to the fast convergence of the phase and di�usion properties with order of the
scheme [16].
The discontinuous Galerkin method is an attractive formulation for high-order discretisation

of hyperbolic conservation laws. Following the work of Cockburn and Shu [17] and Lomtev,
Quillen and Karniadakis [18] we proceed as follows.
Considering the one-dimensional hyperbolic system (3) in conservative form and assuming

that KR =0 we have
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To solve this system in a domain �= (a; b) discretised into a mesh of Nel elemental non-
overlapping regions �e=(xle; x

u
e), such that x

u
e = xle+1 for e=1; : : : ; Nel, and

Nel⋃
e=1
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we start by constructing the weak form of (14), i.e.(
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where � represents an arbitrary function in � and
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is the standard L2(�) inner product. Decomposing the integral into elemental regions we
obtain
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Integrating the second term by parts leads to
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}
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To get the discrete form of our problem we choose U to be in the �nite space of L2(�)
functions which are polynomial of degree P on each element. We indicate an element of such
space using the superscript �. We also note that U� may be discontinuous across inter-element
boundaries. However to attain a global solution in the domain � we need to allow information
to propagate between the elemental regions. Information is propagated between elements by
upwinding the boundary �ux, F, in the third term of Equation (17). Denoting the upwinded
�ux as Fu, the discrete weak formulation can now be written as
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+ [�� · Fu]x
u
e
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}
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Following the traditional Galerkin approach, we choose the test function �� within each
element to be in the same discrete space as the numerical solution U�. At this point if we
de�ned our polynomial basis and choose an appropriate quadrature rule we would now have a
semi-discrete scheme. However, from an implementation point of view, the calculation of the
second term in Equation (18) can be inconvenient and consequently we choose to integrate
this term by parts once more to obtain

Nel∑
e=1
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@U�
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;��

)
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(
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@x
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)
�e

+ [�� · {Fu − F(U�)}]xuexle

}
=0 (19)

We note that the information between elements is transmitted by the third boundary term as
the di�erence between the upwinded and the local �uxes, [�� ·[Fu−F(U�)]]x

u
e

xle
. This method can
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be considered as a penalty method with an automatic procedure for determining the penalty
parameter.
Finally we select our expansion bases to be polynomials of order P and expand our solution

on each element e in terms of Legendre polynomials Lp(	), i.e.

U�|�e(xe(	); t)=
P∑

p=0
Lp(	)Û

p
e (t)

where, following standard �nite element techniques, we consider 	 in the reference element
�st = {−16	61} and introduce the elemental a�ne mapping

xe(	)= xle
(1− 	)
2

+ xue
(1 + 	)
2

We note that the choice of discontinuous discrete solution and test functions allow us to
decouple the problem on each element, the only link coming through the upwinded boundary
�uxes. Legendre polynomials are particularly convenient because the basis is orthogonal with
respect to the L2(�e) inner product and Equation (19) turns out to be equivalent to solving,
componentwise, for all elements e

Je
@Û

p
i; e

@t
= − Je

(
@Fi
@x

; Lp

)
�e

− [Lp [Fu
i − Fi(U�)]]x

u
e

xle
=0; p=1; : : : ; P; i=1; 2 (20)

where Je is the Jacobian of the elemental mapping, Je= 1
2(x

u
e − xle). To complete the dis-

cretization we require a time integration scheme. Here we have adopted an Adams–Bashforth
scheme. The calculation of the upwind �ux Fu is discussed in Section 3. This upwinding
process can also be used to impose the characteristic boundary conditions through the �ux at
the ends of the global domain �.

5. TAYLOR–GALERKIN METHOD

In this section we describe the numerical discretisation of the (Q;A) system described by
Equation (1) recast in the conservation form (6) given by

@Q
@t
+

@G
@x
=B

where once again we have taken RK =0 and the expressions for Q, G and B are given
in (5).
We proceed to discretize equation (6) by adopting a second-order Taylor–Galerkin scheme,

which is the �nite element counterpart of the well known Lax–Wendro� �nite di�erence
scheme.
The presence of a non-constant source term and the explicit dependence of the momentum

�ux G on the variable x through �(x) makes the derivation of the scheme slightly more
complex. In the rest of this paper we will use the abridged notation

GQ=
@G
@Q

; BQ=
@B
@Q
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We follow the usual route to derive the Lax–Wendro� scheme, by writing
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We stress that, in contrast to the normal derivation of a Lax–Wendro� scheme, we have not
further developed the x derivative of the �uxes, since for our problem

@G
@x

�=GQ @Q
@x

because of the dependence of G on x through �.
For the time discretisation, we consider a timestep �t and indicate by a superscript n

quantities computed at time tn= n�t. Applying, as in a standard Lax–Wendro� procedure, a
truncated Taylor expansion in time around tn and exploiting (21) and (22) we �nally obtain
the following time-marching scheme
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Space discretization is carried out by using linear �nite elements. To that purpose, let us
subdivide the domain � into Nel �nite elements �e, of constant size h. We indicate by Vh

the space of continuous vector functions de�ned on �, linear on each element, and with V0h
the set formed by functions of Vh which are zero at x= a and b. Furthermore, we omit the
subscript � in the L2(�) vector product.
Using the notation

GLW =G+ (�t=2)GQB

BLW =B+ (�t=2)BQB

the �nite element formulation of (23) is: for n¿0, �nd Qn+1
h ∈Vh which satis�es
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The boundary values of Qn+1
h are calculated using the technique described in Section 6.5. Q0

h
will also be taken as the �nite element interpolant of the given initial data Q0.
In (24) we need to numerically integrate the terms containing the �uxes and sources. For

the terms involving Gn and Gn
Q we have projected each component on the �nite element

function space Vh via interpolation. The same applies for the other vector products which
involve only Gn and Gn

Q.
As for the terms containing Bn and Bn

Q, we have adopted a slightly di�erent approach in
order to assure the strong consistency of the numerical scheme with respect to constant so-
lutions. More precisely, we wanted to ensure that our numerical scheme exactly represented
constant solutions of the di�erential problem. In view of this, the term d�=dx has to be ap-
proximated by piecewise constants. Therefore, on each element (xle; x

u
e) we have approximated

d�=dx by [�(xui ) − �(xli )]=h. For the remaining terms we have applied the same technique
adopted for the �uxes. This gives rise to a piecewise linear discontinuous representation for
the source terms.

6. NUMERICAL BOUNDARY CONDITIONS

The numerical schemes (20) and (24) need to be complemented with boundary data Q or U
at the boundaries of the domain �. We note that knowledge of W1 and W2 at the boundaries
would in principle enable us to compute the corresponding values of Q or U, thanks to relation
(12). However, given that the propagation speed is subcritical, only one condition has to be
assigned at each end for the well-posedness of the di�erential problem. The implementation of
boundary conditions for the discontinuous Galerkin and Taylor–Galerkin schemes is discussed
in the following sections.

6.1. Discontinuous Galerkin method: Flux upwinding

The boundary conditions in the discontinuous Galerkin method are imposed in an identical
fashion to the �ux upwinding term applied at the inter-elemental boundaries and therefore are
discussed together in this section.
Here we will assume the problem remains subcritical, i.e. c¿u, and therefore �1¿0 and

�2¡0. We consider a point x= xue = xle+1 at the interface between elements e and e+1. Given
a function f continuous on each element e and e + 1, yet possibly discontinuous at x, we
indicate by fl and fr its left and right limiting values, respectively. Equivalently,

fl=f|�e(x
u
e); fr =f|�e+1(x

l
e+1)

The appropriate characteristic information at point x is given by

W1 = ul + 4A
1=4
l

√
�l
2�

(25)

W2 = ur − 4A1=4r

√
�r

2�
(26)
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Figure 2. Arterial tree bifurcation: notation.

When � is continuous (�l=�r), Fu at point x is computed by posing Fu=F(Uu), where
Uu=[Au; uu]T is computed from W1 and W2 given by Equations (25), (26) and applying
Equations (12), i.e

F(Uu)=

[
F1(Uu)

F2(Uu)

]
=


 Auuu

(uu)2

2 + p(Au)
�




This upwinding is applied at all elemental interfaces, including the in�ow and out�ow,
where W1 (in�ow) or W2 (out�ow) are now provided by the boundary conditions.

6.2. Discontinuous Galerkin method: Discontinuous material properties

For the case where the material properties are discontinuous across the interface then equations
(25) need to be supplemented with additional information. A reasonable choice is to assume
continuity of �uxes and thus impose that continuity of mass �ux and total pressure across the
interface, i.e.

Q= ulAl= urAr (27)

Pr = �
u2l
2
+ �l(

√
Al −

√
Al0)=�

u2r
2
+ �r(

√
Ar −

√
Ar0) (28)

This interface conditions will preserve the conservation properties of (A; u) system. This
approach would also permit a discontinuity of the vessel reference area A0. Equations
(25)–(28) are then solved in an iterative fashion to determine the values of ul, ur , Al and Ar .

6.3. Discontinuous Galerkin method: Treatment of bifurcations

The 1D model of the compliant tube can be extended to handle the arterial tree by imposing
suitable interface conditions at the bifurcations or branching points of the tree.
In the presence of a bifurcation at the inter-elemental boundaries we consider, following

the notation of Figure 2, a point x= xue = xle+1 = xle+2 at the interface between three elements
e, e+1 and e+2. Similarly to the interface between two elements, a function f is continuous
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on each element e, e+1 and e+2 and may be discontinuous at x, where fl, fr1 and fr2 are
the left and right limiting values

fl=f|�e(x
u
e); fr1 =f|�e+1(x

l
e+1); fr2 =f|�e+2(x

l
e+2)

At the bifurcation we have six unknowns: (Al; ul) in the parent vessel (left vessel in Figure 2),
(Ar1; ur1) in the upper daughter vessel, and (Ar2; ur2) in the lower daughter vessel.
The �rst three equations required to solve the problem are obtained by imposing that the

characteristic variables at point x in each vessel should remain constant. Their values are

W1 = ul + 4A
1=4
l

√
�l
2�

(29)

W21 = ur1 − 4A1=4r1

√
�r1

2�
(30)

W22 = ur2 − 4A1=4r2

√
�r2

2�
(31)

At a bifurcation it is likely that � will be discontinuous. The other three equations required
to close the problem are obtained from the continuity of mass �ux and total pressure across
the boundary of the elements at the bifurcation, i.e.

Q= ulAl = ur1Ar1 + ur2Ar2 (32)

Pr = �
u2l
2
+ �l(

√
Al −

√
Al0) = �

u2r1
2
+ �r1(

√
Ar1 −

√
Ar10) (33)

Pr = �
u2l
2
+ �l(

√
Al −

√
Al0) = �

u2r2
2
+ �r2(

√
Ar2 −

√
Ar20) (34)

The six equations given by (29)–(34) de�ne a non-linear system of algebraic equations which
determine the values of (Al; ul), (Ar1; ur1) and (Ar2; ur2) at the bifurcation. These values are
then used to evaluate the upwind �ux at the elemental interfaces in the numerical discretization.

6.4. Discontinuous Galerkin method: Terminal vessels

The human arterial system is a network of large arteries branching out into many smaller
arteries, arterioles and capillaries. We are usually interested in the results in the larger arteries
in the network. Blood vessels further down the arterial tree maybe very small and numerous.
To reduce the problem size only a small part of the network will be modelled. The networks
of blood vessels further down the arterial system will also be transmitting backward travelling
waves in the body, therefore at the boundary of the modelled arteries an approximation needs
to be included for these re�ections.
To model the re�ected waves a re�ection coe�cient is applied to the waves exiting the

terminal vessels. The re�ection coe�cient, Rt , is de�ned in Reference [19] as the ratio of the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:673–700



686 S. J. SHERWIN ET AL.

magnitude of change of pressure across the re�ected wave, dP, to the magnitude of change
of pressure in the incident wave, �P. It is a function of the terminal resistance at the vessel
out�ow and is given by

Rt =
dP
�P

=
RP − �c
RP + �c

where RP represents the resistance in the arterial network beyond the terminal vessel. The
assumption adopted here for calculating the terminal resistance is that of Reference [20] who
assumed that RP=P=U where P is the pressure upstream of the vessel and U is the mean
velocity. The mean velocity was based on an even distribution of blood �ow around the body
and the venous pressure is assumed to be zero.
The value of Rt permits the out�ow at the boundary to vary between a free out�ow when

Rt =0 and a blockage when Rt =1. Using this relationship and Equation (12) which relates
the velocity u and the characteristic variables, W1 and W2, the velocity, u?, at the boundary
can be speci�ed to be

u?=
[
(u0 + ul)

2
+ 2(cl − c0)

]
(1− Rt) (35)

where u0 and c0 are the undisturbed states on the right-hand side at t=0. The characteristic
variable W1 remains unaltered at the out�ow boundary and is given as

W1 = ul + 4cl= u? + 4c?

and therefore c? at the boundary must be

c?=
[
ul − u?

4

]
+ cl (36)

We de�ne the incoming wave, W2, as

W2 = ur − 4cr = u? − 4c? (37)

Substituting Equations (35) and (36) into Equation (37) and choosing cl= cr at the boundary,
leads us to the values of ur and Ar to be prescribed at the boundary, these are

ur = (1− Rt)[(u0 + ul) + 4(cl − c0)]− ul

Ar = Al

The characteristic variable, W2, at the out�ow can now be calculated using Equation (26).

6.5. Taylor–Galerkin method: Extrapolating characteristics

For the Taylor–Galerkin method we require information about the conservative variables at the
ends of the domain, i.e. Q(a; t) and Q(b; t). To extract this from the characteristic information
W1(a; t) and W2(b; t) we require an additional expression for the other characteristic variables
W2(a; t) and W1(b; t) to recover Q using Equation (12) which must also be compatible with
the original di�erential problem. In the current approach, we have adopted a technique based
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Figure 3. Test case layout.

on the extrapolation of the outgoing characteristics. We make the initial assumption that, at the
boundary points x= a and x= b, d�=dx=0 and that KR is small or zero. We then assume that
in the vicinity of the boundary the �ow is essentially governed by the characteristic system
(13). An equivalent derivation for the (A;Q) system can be found in Reference [6]. Let us
consider now the proximal boundary x= a over a generic timestep (the distal boundary is
treated in a similar fashion). We assume that Qn is known and we linearise �2 in the second
equation in (13) by taking its value at time tn and at x= a. The solution corresponding to
this linearised problem at the time level tn+1 gives

Wn+1
2 (a)=Wn

2 (−�n
2(a)�t)

which is, in fact, a �rst-order extrapolation of the outgoing characteristic variable W2 from the
previous time level. Higher order extrapolations can also be applied. By using this information
together with the value of W1 provided by the boundary condition, Wn+1

1 (a; t), we are able to
compute, using (12), the required boundary data, Qn+1(0).
This technique may be extended to boundary conditions that are not given in terms of the

characteristic variables. For instance, if a given law for the pressure p(a; t)=  (t) is imposed
at the proximal boundary.

7. RESULTS

In order to compare the results of the two numerical techniques we consider an example taken
from Reference [6]. We consider a vessel of constant unit diameter and l=15 units long as
shown in Figure 3.
The material properties varies from a value of �0 either side of an internal region a16x6a2

where it is increased to 
�0. Using the data provided in Reference [6] we obtain that �0 =
451 352 and apply a density of �=1 and 
=100. This region of increased sti�ness is chosen
to be of length L=5 units with a1 = 5, and a2 = 10. Finally the material properties along the
length of the pipe are approximated using a C1 continuous piecewise polynomial function
over a width 2� as indicated in Figure 4. In our problem � was taken to be 0.5. Finally we
consider the �ow in the pipe to be initially at rest and impose an in�ow pressure wave above
the steady equilibrium in the form a solitary half sine wave as shown in Figure 5. This is
represented by

p(0; t)=2000 sin(2�t=T )H (T=2− t)
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Figure 4. Variation of wall properties in test case.
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Figure 5. Time history: (a) Taylor–Galerkin and (b) discontinuous Galerkin schemes.
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Figure 6. Three dimensional interpretation of waves in stented (top) and normal ves-
sel (bottom) (a) t=0:01, (b) t=0:075 and (c) t=0:175. The displacement from A0

has been magni�ed by a factor of 10.

with T =0:33. H (t) is the Heaviside step function which is de�ned as

H (t − a)=

{
1 t¿a

0 t¡a

Figure 5 shows a time history comparison between the Taylor–Galerkin (Figure 5(a)) and
the discontinuous Galerkin (Figure 5(b)) schemes. The Taylor–Galerkin scheme uses 105
non-uniform element re�ned about a1 and a2 whilst the discontinuous Galerkin method uses
5 elements of polynomial order P=6. One element is employed to represent both material
transition regions and three more elements are placed in the regions of constant properties.
A timestep of �t=2× 10−6 was adopted in all computations. In Figure 5 we see the time
history over a time period 0.25 at three points: distal (D), medial (M) and proximal (P) to
the stented region as indicated in Figure 3.
In the top of these �gures we considered the case without variation in material properties,

i.e. 
=1. In this case we see that the pressure wave propagates to the right at a constant
speed. However when we introduce the material variation as shown in the bottom plots there
is an increase in the peak of the proximal waveform due to a re�ection of the incoming
waves at the region of increased sti�ness. Reasonable agreement is found between these two
di�erent numerical implementations. A representation of the wave propagation in the stented
and non-stented vessels at t=0:01; 0:075 and 0.175 is shown in Figure 6. The displacement
of the cross-sectional area variation from the mean value A0 had been magni�ed by a factor
of 10 in these �gures.
As a further test case for the discontinuous Galerkin method we consider a normalised

pipe of unit area, A0 = 1 and normalise the mean velocity so that it has a unit value too.
Physiologically we expect the wave speed to be an order of magnitude higher than the mean
velocity and so we prescribe a mean speed of sound c0 =

√
�=(2�)A1=40 = 10. This can be

achieved by selecting �=10 and �=0:5.
At many arterial locations there is a strong velocity acceleration due to the systolic motion

of the heart followed by a deceleration associated with diastolic motion. Although the �ow
waveform from the aortic valve might be modelled as a half-sine wave the re�ections due
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Figure 7. In�ow velocity boundary conditions.

to bifurcations in the arterial tree cause the local �ow waveforms to di�er considerably from
this input [21]. We therefore take an input �ow waveform, shown in Figure 7, of the form

uin�ow(t)=1− 0:4 sin(wt)− 0:4 sin(2wt)− 0:2 cos(2wt)

where w=2�=T and T is the time period. Making the assumption that the spatial wavelength
� is approximately 100 times larger than the vessel diameter, we choose T =10 since for the
linear case �= c0T ≈ 100.
Since we are considering a problem with a wavelength of �=100, in order to observe

the wave as a function of the artery centreline we will consider a computational interval
(−100; 100). The domain is subdivided into Nel = 10 elements of equal length and a polyno-
mial order of P=7 is applied within each element. The solution at times t=2:5; 12:5 and 20
is shown in Figure 8(a). After t=20 the solution remains time periodic with a time period
of T =10. We note that the solution pro�les for u(x) and A(x) are similar in shape. This
is to be expected if we consider the characteristic variables, W1(x) and W2(x) at the same
times. Figure 8(b) shows that the solution only contains a right travelling W1(x) wave and,
furthermore, Equation (12) indicates that u(x) and A(x) are proportional to powers of W1(x).
In these simulations we have imposed the boundary conditions using the characteristic

upwinding through the �ux vector as discussed in Section 6.1. To apply this boundary condi-
tion, the conservative variables to the left of x= −100 were set to ul(−100; t)= uin�ow(t) and
Al(−100; t)=1. The conservative variables to the right of x=100 were set to ur(100; t)=1
and Ar(100; t)=1. A second-order time stepping scheme was applied with a timestep of
�t=0:005.
We note that the second period of the wave in Figure 8 is slightly steeper than the �rst due

to the nonlinearity of the system. Also the curve has not quite achieved two periods in the
domain since the right travelling wave is moving at a speed u+ c rather than u. In practice
this domain is not physically realizable since if a large artery has an approximate diameter
of 1 cm then the artery would have to be 2 m long! Clearly the wave would normally come
interact with a arterial junction and undergo wave re�ections before it is able to propagate
so far. This is convenient since when we consider the above problem over a longer domain
the non-linearity of the wave is su�cient for a shock to form where the peak of the wave
catches up with its trough.
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Figure 8. Advection of right travelling wave in continuous material at times t=2:5; 7:5 and 20:
(a) conservative variables and (b) characteristic variables.
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Figure 9. Advection of right travelling wave in tapered pipe at times t=2:5; 7:5 and 20: (a) conservative
variables and (b) characteristic variables.

As a �nal example we consider the previous case in a tapering pipe as shown in
Figure 9. The pipe was prescribed to have an undeformed cross sectional area which lin-
early varies from A(−100; t)=1 to A(100; t)=0:5. As initial conditions we speci�ed that the
mass �ux was constant and so u varied linearly from u(−100; t)=1 to u(100; t)=2. The same
boundary conditions were also applied to the left-hand side. However the right-hand boundary
conditions were modi�ed to be compatible with the initial conditions, i.e. Ar(100; t)=0:5 and
ur(100; t)=2.
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Figure 10. Three dimensional interpretation of waves in normal (top) and tapered (bottom) vessels
(a) t=2:5, (b) t=12:5 and (c) t=20. The displacement form A0(x) has been magni�ed by a factor of

10 and the x-axis is scaled by a factor of 1=20.

In Figure 9 we once again show the conservative and characteristic variables at times
t=2:5; 12:5 and 20 similar to Figure 8. We note that for this example more than two periods
are present in the u(x; t) plot as compared to less than two periods in Figure 8. This is to
be expected since the basic wave-speed, c0 =

√
�=(2�)A1=40 , decreases along the pipe as the

area decreases provided that we keep � constant, i.e. we assume that h0=
√
A0 is constant. In

Figure 10 we show a three dimensional representation of the constant and tapered pipe at
times t=2:5; 12:5 and 20. Once again the displacement from A0(x) had been magni�ed by a
factor or 10 and the x-axis has also been scaled by a factor of 1=20.

7.1. Discontinuous Galerkin method: Arterial network

The human circulation is made up of a complex network of vessels: arteries and veins. Ar-
teries are compliant vessels that carry the oxygenated blood to the di�erent parts of the body.
Their compliance accommodates the volumetric changes required to move blood, which is
an incompressible �uid, through the vascular system. A simpli�ed arterial network contain-
ing the 55 largest arteries in the human body was proposed and modelled using electri-
cal circuits by Westerhof in Reference [22]. This reference provides physiological data for
radii, wall thickness, length and elastic moduli for each of the 55 arteries. Terminal resis-
tances for the model have been calculated in Reference [20] using the method described
in Section 6.4. Wang and Parker [21] found that ill-matched forward travelling waves at
the bifurcations would obscure the re�ections from the terminal segments and adjusted the
radii of the 55 arteries to give well-matched forward travelling waves, i.e. waves that give
small re�ections at the bifurcations. The bifurcations are not well-matched for backward
travelling waves.
We have adopted the modi�cations proposed in Reference [21] to the published models

[22, 20] to compute the pulsatile one-dimensional blood �ow through the arterial system using
the discontinuous Galerkin method. Figure 11 shows the connectivity of the arteries used in
our model of the arterial network. The numerical values of the parameters of the arterial tree
are included in Table I. The e�ect of adding terminal resistance is also considered.
The �ow in the 55 arteries is assumed initially to be at rest. The density of blood was

taken to be �=1:021× 103 Kg=m3. A periodic half sine wave is imposed as an input wave
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Figure 11. Connectivity of the 55 main arteries in the human arterial system.

form at the ascending aorta (artery 1), which has the form

A(t)=1− 0:597�(t)H [�(t)]; �(t)= sin(wt + 0:628)− 0:588
where w=2�=T , T =1 and H (�) denotes the Heaviside step function. The graph of W1 against
time in Figure 12(b) represents the form of the input wave. For all computations a timestep
�t=10−5 and polynomial order P=9 were used. The out�ow condition when modelled with
terminal resistance is calculated as described in Section 6.4.
Figures 12, 13 and 14 show eight time history graphs over a single cycle for three di�erent

arteries in the network: ascending aorta (artery 1), femoral artery (artery 46) and anterior
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Table I. Data used in the computational model of the 55 arteries. This table combines the physiological
data published in References [22, 20, 21].

# Artery Length (cm) Area (cm2) �(kg s−2 cm−2) Rt

1 Ascending Aorta 4.0 5.983 97 —
2 Aortic Arch I 2.0 5.147 87 —
3 Brachiocephalic 3.4 1.219 233 —
4 R. Subclavian I 3.4 0.562 423 —
5 R. Carotid 17.7 0.432 516 —
6 R. Vertebral 14.8 0.123 2590 0.906
7 R. Subclavian II 42.2 0.510 466 —
8 R. Radial 23.5 0.106 2866 0.82
9 R. Ulnar I 6.7 0.145 2246 —
10 R. Interosseous 7.9 0.031 12894 0.956
11 R. Ulnar II 17.1 0.133 2446 0.893
12 R. Internal Carotid 17.6 0.121 2644 0.784
13 R. External Carotid 17.7 0.121 2467 0.79
14 Aortic Arch II 3.9 3.142 130 —
15 L. Carotid 20.8 0.430 519 —
16 L. Internal Carotid 17.6 0.121 2644 0.784
17 L. External Carotid 17.7 0.121 2467 0.791
18 Thoracic Aorta I 5.2 3.142 124 —
19 L. Subclavian I 3.4 0.562 416 —
20 Vertebral 14.8 0.123 2590 0.906
21 L. Subclavian II 42.2 0.510 466 —
22 L. Radial 23.5 0.106 2866 0.821
23 L. Ulnar I 6.7 0.145 2246 —
24 L. Interosseous 7.9 0.031 12894 0.956
25 L. Ulnar II 17.1 0.133 2446 0.893
26 Intercostals 8.0 0.196 885 0.627
27 Thoracic Aorta II 10.4 3.017 117 —
28 Abdominal I 5.3 1.911 167 —
29 Celiac I 2.0 0.478 475 —
30 Celiac II 1.0 0.126 1805 —
31 Hepatic 6.6 0.152 1142 0.925
32 Gastric 7.1 0.102 1567 0.921
33 Splenic 6.3 0.238 806 0.93
34 Superior Mesenteric 5.9 0.430 569 0.934
35 Abdominal II 1.0 1.247 227 —
36 L. Renal 3.2 0.332 566 0.861
37 Abdominal III 1.0 1.021 278 —
38 R. Renal 3.2 0.159 1181 0.861
39 Abdominal IV 10.6 0.697 381 —
40 Inferior Mesenteric 5.0 0.080 1895 0.918
41 Abdominal V 1.0 0.578 399 —
42 R. Common Iliac 5.9 0.328 649 —
43 L. Common Iliac 5.8 0.328 649 —
44 L. External iliac 14.4 0.252 1493 —
45 L. Internal Iliac 5.0 0.181 3134 0.925
46 L. Femoral 44.3 0.139 2559 —
47 L. Deep Femoral 12.6 0.126 2652 0.885
48 L. Posterior Tibial 32.1 0.110 5808 0.724
49 L. Anterior Tibial 34.3 0.060 9243 0.716
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Table I. Continued.

# Artery Length (cm) Area (cm2) � (kg s−2 cm−2) Rt

50 R. External Iliac 14.5 0.252 1493 —
51 R. Internal Iliac 5.1 0.181 3134 0.925
52 R. Femoral 44.4 0.139 2559 —
53 R. Deep Femoral 12.7 0.126 2652 0.888
54 L. Posterior Tibial 32.2 0.110 5808 0.724
55 R. Anterior Tibial 34.4 0.060 9243 0.716
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Figure 12. Time histories at the ascending aorta (artery 1) considering: (a) no terminal resistance and
(b) terminal resistance. Plots of velocity, area and the characteristic variables W2 and W1.
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Figure 13. Time histories at the femoral artery (artery 46) considering: (a) no terminal resistance and
(b) terminal resistance. Plots of velocity, area and the characteristic variables W2 and W1.

tibial (artery 49). The history point was at the start of each artery. The results are shown for
a free out�ow (i.e. no terminal resistance) and with terminal resistance applied.
For perfectly matched arteries there should be no backward travelling wave, W2, if there is

no terminal resistance (Figures 12(a), 13(a) and 14(a)), because there should be no re�ections
at the bifurcations and there are no re�ections at the terminal vessels. Figure 14(a) shows that
there is no W2 wave at the anterior tibial artery. There is a small W2 wave in some of the
arteries, because they are not perfectly well-matched forward waves and consequently small
re�ections occur at the bifurcations.
The inclusion of resistance to the terminal arteries increases the number of waves in the

system due to forward travelling waves being re�ected at the terminal vessels and introduces
backward travelling waves, W2, which are re-re�ected at the bifurcations, hence a complex
pattern of waves occurs in the network. Since the re�ection coe�cients are close to 1 in the
terminal vessels W2 is similar in magnitude to W1 and will have a large e�ect on the wave
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Figure 14. Anterior tibial artery (terminal artery 49). Time history comparison of waves
forms with: (a) no terminal resistance and (b) terminal resistance. Plots of velocity, area

and the characteristic variables W2 and W1.

forms, particularly in the end vessels, Figure 14(b). Introducing resistance has greatly changed
the shapes of all the waves throughout the arterial network. The shape of the waves varies
signi�cantly from vessel to vessel whereas the shapes of the waves in the network with no
terminal resistance were all very similar.
The inclusion of terminal resistance leads to more realistic results. Even though quantitative

comparisons are di�cult due to the lack of accurate values of the elastic properties of the
arteries, the computed pressure (or area) waveforms show an increase in their peak value
as we move down the system whilst the mean pressure slowly decreases. This behaviour is
qualitatively similar to that observed in the human arterial system, see for instance the in vivo
measurements by Mills et al. (1970) reproduced in Reference [23]. Terminal resistance also
creates regions of �ow reversal due to the re�ected velocity wave and increases in area as a
result of the re-enforcing e�ect of the re�ected pressure wave. It has also produced a waveform
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Figure 15. Logarithmic plot of velocity error at a point in the abdominal aorta (artery 39) against:
(a) polynomial order and (b) timestep.

which includes a diacrotic notch in the ascending aorta (artery 1). This is highlighted in the
time evolution of the area depicted in Figure 12(b). This is also in agreement with in vivo
data [23].

7.2. Convergence

Tests were done to show that increasing the polynomial order and decreasing the timestep the
solution converged. Figure 15 displays the convergence curves of the error of the velocity in
the abdominal aorta (artery 39) against the polynomial order (Figure 15(a)) and the timestep
(Figure 15(b)) using the solution with P=9 and �t=10−5 as the reference solution for
comparison. The error of the velocity was plotted every cycle for 10 cycles. Our results are
presented for cycle 10.

8. CONCLUSIONS

Starting from the governing equations of the one-dimensional equations for blood �ow in a
tube of variable material properties we have formulated two numerical discretisations using
Taylor–Galerkin and discontinuous Galerkin techniques. We have addressed the problem of
applying appropriate boundary conditions at the terminal ends of a compliant artery or system
of arteries using the characteristic equations for this hyperbolic system. Both schemes were
applied to a model test case of an idealised stent inclusion in a tube to validate both approaches
and to study the e�ect of the increased sti�ness of the stent on the wave propagation pattern
along the artery. The discontinuous Galerkin scheme was also tested on a tapered tube where
physically reasonable results were obtained. Current work is focused on the development of
discontinuous material properties.
Finally we considered the simulation of wave propagation in the human arterial system.

The one-dimensional model of the compliant tube was adapted for a network of arteries by
imposing suitable interface conditions at the bifurcation points where several branches meet.
Waves are re�ected at the bifurcations and these re�ections lead to superimposition of waves
which might result in increased peak pressures at other points of the arterial tree. To model
these e�ects we have adopted a simpli�ed model consisting of the 55 main arteries. The
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missing arteries were simulated through a simple model of terminal resistance. The e�ect
of the terminal resistance was investigated by comparing the wave patterns obtained with
and without terminal resistance. The most important �ndings are that the terminal resistance
generates regions of reversed �ow and also produces a waveform in the ascending aorta
which includes a diacrotic notch. The diacrotic notch is a physiological feature that has been
observed in �ow measurements in vivo.
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